Bài giảng Giải tích 2 - Chương: Tích phân mặt loại 2

PHÁP TUYẾN CỦA MẶT CONG.

Cho mặt cong S: F(x, y, z) = 0, M(x0,y0,z0) Î S

•L là đường cong trong S đi qua M. Tiếp tuyến của L tại M gọi là tiếp tuyến của S tại M.

•Các tiếp tuyến này cùng thuộc 1 mặt phẳng gọi là mặt tiếp diện của S tại M.

•Pháp tuyến của mặt tiếp diện tại M gọi là pháp tuyến của S tại M.

ppt 57 trang xuanthi 27/12/2022 3240
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Giải tích 2 - Chương: Tích phân mặt loại 2", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pptbai_giang_giai_tich_2_chuong_tich_phan_mat_loai_2.ppt

Nội dung text: Bài giảng Giải tích 2 - Chương: Tích phân mặt loại 2

  1. PHÁP TUYẾN CỦA MẶT CONG. Cho mặt cong S: F(x, y, z) = 0, M(x0,y0,z0) S •L là đường cong trong S đi qua M. Tiếp tuyến của L tại M n gọi là tiếp tuyến của S tại M. •Các tiếp tuyến này cùng thuộc 1 mặt phẳng gọi là mặt tiếp diện của S tại M. •Pháp tuyến của mặt tiếp diện tại M gọi là pháp tuyến của S tại M.
  2. (xtytzt (),(),()0 0 0 ) ⊥ ( FMFMFMx (), y (), z ()) (đúng với mọi đường cong trong S và qua M) n = ( Fx ( M ), F y ( M ), F z ( M )) và các vector tỷ lệ là pháp vector của S tại M Một ký hiệu khác: gradF() M = (FMFMx ( ), y ( ),FM z ( )) (gradient của F tại M)
  3. Một số ví dụ tìm pháp vector a/ Mặt nón S: x2+= y 2 z 2 z = x22 + y M(,,), x0 y 0 z 0 S n( M )= ( 2 x0 ,2 y 0 , − 2 z 0 )
  4. MẶT ĐỊNH HƯỚNG S được gọi là mặt định hướng (mặt 2 phía) nếu cho pháp vector tại M S di chuyển dọc theo 1 đường cong kín không cắt biên, khi quay về điểm xuất phát vẫn không đổi chiều. Ngược lại, pháp vector đảo chiều, thì S được gọi là mặt không định hướng (mặt 1 phía ). Phía của S là phía mà đứng trên đó, pháp vector hướng từ chân lên đầu. (Chương trình chỉ xét mặt 2 phía)
  5. Mặt hai phía
  6. b/ Mặt trụ S: x2+= y 2 R 2 M(,,), x0 y 0 z 0 S n( M )= ( 2 x00 ,2 y ,0) PVT trong M n= ( x00 , y ,0) PVT ngoài
  7. Pháp vector đơn vị z n   y x n = (cos ,cos  ,cos  )
  8. Pdydz++ Qdzdx Rdxdy S = (P cos + Q cos  + R cos  ) ds S
  9. (,,)x y z I== ( PQRnds , , ). ( xyz , , ). ds SSR x2++ y 2 z 2 R2 = ds = ds = R ds R R S S S = 2 R3
  10. Phía trên nhìn từ Oz+ thành phần thứ 3 của n phải không âm 111 n = ,, 333
  11. S: z = 1 – x – y , hc S= D: x = 0, y = 0, x + y = 1 Oxy 1 1 I= −() x − y + z ds 3 S 1 = −(x − y + 1 − x − y ) 3 dxdy 3 D 11−y 1 = −dy(1 − 2 y ) dx = − 6 00
  12. Tính I3 = R(,,) x y z dxdy S  : góc hợp bởi Oz+ với n •Viết pt S dạng: z = z(x,y) (bắt buộc) •Tìm hình chiếu Dxy của S lên mp z = 0 (Oxy) ( bắt buộc)  I=+ R( x , yz ( x , y )) dxdy 2 3 Dxy  I=− R( x , yz ( x , y )) dxdy 2 3 Dxy
  13. Pt của S: x = x(y, z) Tương tự: I : 1 Dyz = hc của S lên Oyz Góc của PVT so với Ox+ Pt của S: y = y(x, z) I : 2 Dzx = hc của S lên Ozx Góc của PVT so với Oy+ S // Ox (hoặc chứa Ox) I1 = 0 S // Oy (hoặc chứa Oy) I2 = 0 S // Oz (hoặc chứa Oz) I3 = 0
  14. I= zdxdy = + R2 − x 2 − y 2 dxdy SDxy  2 2 R 2 D I= d R2 − r 2 rdr = R 3 xy 3 00
  15. z n S2 n 1 , 2 S1 2 2 là góc của Ox+ với n y x
  16. 3/ Cho S là phía ngoài của mặt cầu 2 x2+ y 2 + z 2 = R 2 tính I= xz dxdy S 2 2 2 S = S1  S2 : z= R − x − y  ,  1 2 2 2 2 2 2 hc S1,2 = Dxy : x + y R Oxy Lưu ý: S1 và S2 đối xứng qua mp z = 0
  17. Lưu ý về tính đối xứng S gồm S1 và S2 đối xứng qua mp z = 0 • R(x, y, z) chẵn theo z : I3 = 0 • R(x, y, z) lẻ theo z: R( x , y , z ) dxdy= 2 R ( x , y , z ) dxdy SS1 Tương tự cho I1(xét P và mp x=0), I2(xét Q và mp y=0)
  18. I== I3 zdxdy S =+ y2 dxdy Dxy Dxy
  19. VÍ DỤ 1/ Cho S là phía ngoài mặt bao khối  : x2 + y2 z 1. Tính I= zy2 dydz +() y + y 2 dzdx + x 2 dxdy S GO− PQR   I= ++ dxdydz x  y  z  = (0 + 1 + 2y + 0) dxdydz 
  20. 2/ Cho S là phía ngoài phần mặt paraboloid z = x2 + y2 bị chắn bởi mp z = 1. Tính I= zy2 dydz +() y + y 2 dzdx + x 2 dxdy S S là mặt hở.
  21. Áp dụng công thức G-O: zy22 dydz+() y + y dzdx + xdxdy SS 1 PQR   = + +dxdydz = x  y  z 2  (xem ví dụ trước) + = 2 SS1
  22. 3/ Cho S là phía trong mặt bao khối  giới hạn bởi:z = 4 – y2 , x = 0, x = 4, z = 0. Tính: I= zxdydz + xdzdx + zydxdy S I=− ( Px + Q y + R z ) dxdydz  = − (z + 0 + y ) dxdydz  4 2 4−y 2 = − dx dy () z + y dz 0− 2 0
  23. C C S S
  24. VÍ DỤ 1/ Cho C là giao tuyến của trụ x2 + y2 = 1 và trụ z = y2 lấy ngược chiều kim đồng hồ nhìn từ phía dương Oz. Tính: I= ( x + y ) dx + (2 x22 − z ) dy + xy dz C
  25. z = y2 bị chắn trong trụ x2+y2=1 I= (2 xy + 1) dydz − y2 dzdx +( 4 x − 1) dxdy S = 0 = 0 (Vì S chứa Ox) (tính đối xứng)
  26. 2/ Cho C là giao tuyến của trụ x2 + y2 = 1 và mặt phẳng x + z = 1 lấy ngược chiều kim đồng hồ nhìn từ gốc tọa độ. Tính: I= ()()() y − z2 dx + z − x 2 dy + x − y 2 dz C
  27. I= ( −2 y − 1) dydz +( − 2 z − 1) dzdx +( − 2 x − 1) dxdy S Chuyển sang tp mặt loại 1 (1,0,1) S: x + z = 1, n =− 2 I= ( −2 y − 1, − 2 z − 1, − 2 x − 1) . nds S 2 =(y + x + 1) ds 2 S