Bài giảng Giải tích 1 - Bài 14: Tích phân suy rộng (Phần 2)

Cho f(x) khả tích trên [a, b –  e], với mọi e > 0 đủ nhỏ,
kỳ dị tại b, F(x) là nguyên hàm của f(x).

Lưu ý: các pp đổi biến số và tp từng phần vẫn
dùng như tp xác định.

ppt 22 trang xuanthi 4120
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Giải tích 1 - Bài 14: Tích phân suy rộng (Phần 2)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pptbai_giang_giai_tich_1_bai_14_tich_phan_suy_rong_phan_2.ppt

Nội dung text: Bài giảng Giải tích 1 - Bài 14: Tích phân suy rộng (Phần 2)

  1. TÍCH PHÂN SUY RỘNG LOẠI 2 Điểm kỳ dị: Cho f(x) xác định trên [a, b] \ {x0}. Nếu limfx ( ) = xx→ 0 ta nói x0 là điểm kỳ dị của f trên [a, b] b Tích phân suy rộng loại 2 là f() x dx a với f có ít nhất 1 điểm kỳ dị trên [a, b]
  2. Nếu f kỳ dị tại a và b b c b fxdx()()()=+ fxdx fxdx a a c Nếu f kỳ dị tại x0 (a, b) b x b f()()() x dx=+0 f x dx f x dx a a x0 (vế trái hội tụ các tp vế phải đều hội tụ)
  3. Ví dụ 1 dx x 1 = = arcsin 0 0 1− x2 2 1ln x dx kỳ dị tại x = 0 0 x 1 1 ln2 x = lnx . d( ln x) = = − 0 2 0 Vậy tp trên phân kỳ.
  4. Ví dụ −1/4 dx I = f kỳ dị tại x = −1/2. −1/2 xx21+ t2 =2 x + 1 2 tdt = 2 dx 1/ 2 tdt 1/ 2 dt I = = 2 0 t 2 −1 0 t 2 −1 t 2 1/ 2 1/ 2 11 t −−1 2 1 =−dt ==ln ln 0 tt−+11 t +1 0 21+
  5. TÍCH PHÂN HÀM KHÔNG ÂM Tiêu chuẩn so sánh 2: Cho f(x), g(x) như tiêu chuẩn so sánh 1 fx() Đặt k = lim (giới hạn tại điểm kỳ dị) xb→ − gx() bb Cùng hội tụ • 0 k f(),() x dx g x dx aa hoặc phân kỳ b b • k = 0 g() x dx hội tụ f() x dx hội tụ a a b b • k = g() x dx phân kỳ f() x dx phân kỳ a a
  6. Sự hội tụ tuyệt đối (hàm có dấu tùy ý) b Cho f(x) khả tích trên [a, b - ],   0, nếu f a b b hội tụ thì f hội tụ. Khi đó ta nói f a a hội tụ tuyệt đối. • Sự hội tụ tuyệt đối là sự hội tụ của tích phân |f| • Hội tụ tuyệt đối hội tụ
  7. 1 Chọn gx()= (x − 0)1/2 f() x x x + = ⎯⎯⎯→x→0 1 g( x ) sin x 11dx I cùng bản chất với g() x dx = 0 0 (x − 0)1/2 nên hội tụ.
  8. Xét I1: f kỳ dị tại x = 0 11 f( x )= , khi x → 0+ sinx cos x x 1 Chọn gx()= x f() x x + = ⎯⎯⎯→x→0 1 gx() sinxx cos 3 nên hội tụ. I1 cùng bản chất với g() x dx 0
  9. 1 Chọn gx()= 1 − x 2 − fx() − x x→ =2 ⎯⎯⎯→2 1 gx() sinxx cos 2 nên pkỳ I2 cùng bản chất với g() x dx /3 I1 hội tụ, I2 phân kỳ I hội tụ
  10. Ví dụ 3/2 + (xx+1) Khảo sát sự hội tụ I= dx 0 ex −1 f kỳ dị tại x = 0, tách I thành 2 tích phân: 3/2 3/2 1(x++11) x+ ( x) x I=+ dx dx 01eexx−−11 I2 I1 (do x = 0 quyết định) (do x = + quyết định)