Giáo trình Kỹ thuật thiết bị phản ứng

Thiết bị phản ứng là các thiết bị trọng tâm của đa số các quá trình biến đổi hóa học.
Người ta định nghĩa thiết bị phản ứng là thiết bị mà trong đó xảy ra các phản ứng hóa
học, nghĩa là các thiết bị để chuyển hóa các chất tham gia phản ứng thành các sản phẩm hóa
học.
Nội dung chủ yếu của giáo trình này là đi sâu vào cơ chế các quá trình phản ứng, quy luật
và ứng dụng quy luật để giải quyết một số vấn đề công nghệ, đặc biệt là các quá trình phản
ứng thường gặp trong công nghệ hóa học các hợp chất vô cơ và hữu cơ. Sau đó, chúng ta sẽ
khảo sát các loại thiết bị phản ứng khác nhau được sử dụng trong lĩnh vực lọc - hoá dầu cũng
như sẽ nghiên cứu nguyên lý hoạt động và phương pháp thiết kế các loại thiết bị phản ứng này
(sẽ đưa ra các trường hợp tính toán cụ thể) . 
pdf 70 trang xuanthi 27/12/2022 3440
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Kỹ thuật thiết bị phản ứng", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfgiao_trinh_ky_thuat_thiet_bi_phan_ung.pdf

Nội dung text: Giáo trình Kỹ thuật thiết bị phản ứng

  1. 44 Như vậy, ta nhận thấy rằng điểm B khác với điểm A và C. Một sai lệch nhỏ ra khỏi B, hệ thống sẽ không trở về B. Trong khi đó, một sai lệch nhỏ ra khỏi A và C, hệ thống sẽ tự điều chỉnh để trở về hai điểm đó ⇒ Điều kiện tại A và C là điều kiện hoạt động ổn định bền, điều kiện tại B là điều kiện hoạt động không bền. 1.0 C Đường cân bằng vật chất n hoá ể B chuy Đường cân Độ bằng nhiệt A xA1 xA2 T1 T2 Nhiệt độ T Hình 6-2 : Sự thay đổi độ chuyển hóa vào nhiệt độ trong thiết bị phản ứng khuấy trộn hoạt động đoạn nhiệt Ví dụ : Cho phản ứng pha lỏng đồng thể bậc một, thực hiện trong một thiết bị phản ứng khuấy trộn lý tưởng. Nồng độ của tác chất trong dòng nhập liệu là 3 mol/l, lưu lượng là 60 cm3/s. Khối lượng riêng và nhiệt dung riêng của hỗn hợp phản ứng xem như không đổi và lần lượt là 1g/cm3 và 1cal/g oC. Thể tích thiết bị phản ứng là 18 lít. Dòng liệu ban đầu không có sản phẩm và thiết bị phản ứng hoạt động đoạn nhiệt. Nhiệt phản ứng và vận tốc phản ứng lần lượt là : ∆H r = −50000 cal/ mol 6 −15000 / RT 3 ()− rA = 4,48.10 .e .C A mol/ cm .s Với CA - nồng độ tác chất, mol/cm3 T - nhiệt độ, K Nếu nhập liệu ban đầu ở 25 oC, tìm độ chuyển hóa và nhiệt độ của dòng sản phẩm ra ở điều kiện ổn định IV.3 THIẾT BỊ PHẢN ỨNG DẠNG ỐNG Đối với thiết bị phản ứng dạng ống ở điều kiện làm việc ổn định, không có gradient nhiệt độ theo phương bán kính và sự khuyếch tán nhiệt theo phương trục với quá trình đoạn nhiệt. Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  2. 46 V THIẾT KẾ HỆ PHẢN ỨNG DỊ THỂ V.1 PHÂN LOẠI HỆ PHẢN ỨNG DỊ THỂ Với ba trạng thái vật chất : khí, lỏng, rắn - ta gặp đầy đủ trong công nghiệp các phản ứng kết hợp giữa các trạng thái này : V.1.a Phản ứng khí - rắn : • có thể xem là loại phản ứng quan trọng nhất trong công nghiệp hoá chất ; • Với pha rắn là chất xúc tác thường gặp trong các quá trình chế biến dầu mỏ như quá trình : cracking xúc tác, isomer hóa, reforming xúc tác, • phản ứng với pha rắn là tác chất như phản ứng nung quặng FeS, ZnS, V.1.b Phản ứng lỏng - rắn : • Với pha rắn là chất xúc tác, ta có phản ứng alkyle hóa với chất xúc tác là AlCl3 ; • Trong hệ phản ứng này, chất xúc tác thường tạo phức với tác chất và/hay sản phẩm tạo thành hỗn hợp lỏng - rắn. V.1.c Phản ứng khí - lỏng - rắn • Trong hệ phản ứng này, một tác chất ở thể khí, một tác chất ở thể lỏng và chất xúc tác là pha rắn ; • Thường gặp trong các phản ứng khử lưu huỳnh (HDS) cho gasoil, phản ứng hydrogen hóa dầu ăn với chất xúc tác rắn, phản ứng polymer hóa (polymer hóa C2H4 bằng cách cho hòa tan trong một dung môi lỏng với chất xúc tác rắn) V.1.d Phản ứng lỏng - lỏng • Là loại phản ứng thông dụng trong lọc dầu và tổng hợp hữu cơ • Ví dụ như phản ứng alkyle hóa hydrocarbon với dung dịch H2SO4 hoặc HF làm chất xúc tác tạo thành xăng alkylat có chỉ số octane cao hoặc tạo các hydrocarbon mạch nhánh. V.1.e Phản ứng khí - lỏng • Là quá trình hấp thụ chất khí vào chất lỏng có kèm theo phản ứng hóa học trong các tháp hấp thụ ; • Thường gặp trong quá trình khử acide cho khí thiên nhiên bằng cách hấp thụ khí H2S và CO2 bằng các dung dịch alkanolamine, hoặc quá trình hấp thụ khí SO2 trong khói thải bằng dung dịch KOH V.2 ÁP DỤNG VÀO THIẾT KẾ Khi thiết kế thiết bị phản ứng cho hệ phản ứng dị thể, chúng ta gặp phải hai khó khăn chính mà trước đây không gặp trong phản ứng đồng thể : a- Sự phức tạp của phương trình vận tốc phản ứng : Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  3. 48 Không có chất xúc tác, phản ứng có năng lượng hoạt hoá cao và tốc độ chậm g n ứ n ả h p Có chất xúc tác làm giảm hàng rào a ủ năng lượng và tăng nhanh tốc độ phản ứng t hoá c ạ ho g n ượ l Trạng thái cuối g n Trạng thái đầu ă N Tác chất Hợp chất trung gian Sản phẩm - chất xúc tác không tham gia trực tiếp vào phản ứng hóa học mà chỉ có tác dụng liên kết một hoặc nhiều cấu tử tạo hợp chất trung gian không bền nhưng có tính hoạt hóa cao, dễ phản ứng với các cấu tử khác tạo sản phẩm. Sau phản ứng, chất xúc tác trở lại trạng thái ban đầu. Giả sử ta xét phản ứng : A + B ⇒ C với chất xúc tác có tâm hoạt hóa là L, ta có 2 trường hợp : ♦ Nếu chất xúc tác chỉ liên kết với một cấu tử : (chỉ một cấu tử bị hấp phụ trên tâm hoạt hóa) quá trình phản ứng trên xảy ra với sự có mặt của chất xúc tác qua 3 giai đoạn : - hoạt hóa ở tâm hoạt hóa : A + L ⇒ A* - phản ứng : A* + B ⇒ C* - tạo sản phẩm và hoàn nguyên xúc tác :C* ⇒ C + L ♦ Nếu cả 2 cấu tử cùng bị hấp phụ trên chất xúc tác : A + L ⇒ A* B + L ⇒ B* A* + B* ⇒ C*+ L C* ⇒ C + L Với A*, B*, C* là các hợp chất trung gian không bền, ở trạng thái hoạt hóa • Vì vậy, các yêu cầu của một chất xúc tác là : - Có độ hoạt tính cao, độ chọn lựa lớn và ổn định (bền cơ, bền nhiệt) ; - Có bề mặt riêng lớn ; - Dễ tái sinh ; - Có giá thành rẻ. Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  4. 50 80 (74 + 80 ) / 2 = 77 6 100 (80 + 100 ) / 2 = 90 14 150 (100 + 150 ) / 2 = 125 10 > 150 X 2 Tổng cọng 100 Âæåìng cong phán phäúi khäúi læåüng haût 100 90 80 70 60 , % 50 i x 40 30 20 10 0 0 30 60 90 120 150 ti, m 100 ⎛ 2 3 6 57 6 14 10 2 ⎞ = ⎜ + + + + + + + ⎟ d1 ⎝10 25 35 57 77 90 125 X ⎠ Vậy : Nãúu bo íqua sä ú haûng cuäúi cuìng, ta tênh âæåüc : d1 = 55µm • Bài tập áp dụng 2 : Hãy xác định đường kính trung bình của mẫu hạt xúc tác dạng trụ sử dụng cho quá trình HDS biết : Φ = 1,2 mm ; H = 3,6 mm. Giải : 2 ⎛ Φ ⎞ 3 3 ∑V = ⎜π ⎟()3Φ = πΦ 6 V ⎝ 4 ⎠ 4 Ta có : d = ∑ Mà : H = 3Φ ⇒ 1 S 2 ∑ ⎛ Φ ⎞ 7 2 ∑ S = 2⎜π ⎟ + π.Φ.3Φ = πΦ ⎝ 4 ⎠ 2 Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  5. 52 Khối lượng thể tích của tầng xúc tác : 3 ρC = ρ p .e p + ρ g .(1− e p ) = 1116 × 0,6 +1× 0,4 = 670(kg / m ) V.3.b Cơ chế của phản ứng hệ khí với chất xúc tác rắn (2 pha) ♦ Quá trình phản ứng xảy ra trên hạt xúc tác theo các bước sau : 1. Quá trình di chuyển chất tham gia phản ứng qua lớp biên thuỷ lực do kết hợp giữa đối lưu và khuyếch tán 2. Khuyếch tán vào mao quản của hạt xúc tác đến các tâm hoạt hóa 3. Hấp phụ trên các tâm hoạt hóa 4. Phản ứng hóa học tạo sản phẩm 5. Nhả sản phẩm 6. Khuyếch tán sản phẩm từ tâm hoạt hóa ra khỏi mao quản đến bề mặt hạt xúc tác 7. Di chuyển sản phẩm qua lớp biên thuỷ lực vào dòng khí ⇒ Như vậy, quá trình phản ứng hệ khí-rắn bao gồm các quá trình chính sau : 1. Quá trình di chuyển chất qua lớp biên thuỷ lực do kết hợp giữa đối lưu và khuyếch tán (bước 1 và 7). Quá trình này được gọi là quá trình cấp khối ngoài 2. Quá trình khuyếch tán vào mao quản (bước 2 và 6). Về nguyên lý được miêu tả bằng định luật khuyếch tán (định luật Fick II) và được gọi là khuyếch tán trong 3. Quá trình hấp phụ và nhả hấp phụ (bước 3 và 5) 4. Quá trình phản ứng hóa học (bước 4) Quá trình hấp phụ, nhả hấp phụ và phản ứng hóa học đều xảy ra ở tâm hoạt hóa trong mao quản Hình : Cơ chế quá trình phản ứng với chất xúc tác rắn xốp A- Dòng khí B- Lớp biên A B C C- Hạt xúc tác D- Mao quản trong hạt xúc tác D ♦ Quá trình khuyếch tán trong tuân theo định luật Fick II, nếu chỉ xét sự khuyếch tán theo trục hoành x thì biến thiên nồng độ của cấu tử khuyếch tán j theo thời gian và chiều dài 2 ∂C j ∂ C j mao quản là : = D j. ∂t ∂x 2 Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  6. 54 - quá trình hấp phụ hầu như không phụ thuộc vào cấu trúc phân tử mà chỉ phụ thuộc vào độ lớn của phân tử - khi nhiệt độ tăng thì tốc độ quá trình hấp phụ giảm - Có khả năng hấp phụ trên toàn bề mặt ∴ Ví dụ : Xét quá trình tổng hợp amoniac bằng phương pháp hấp phụ : thường được thực hiện ở nhiệt độ và áp suất cao có xúc tác sắt. Amoniac có ý nghĩa rất lớn trong công nghiệp hóa chất để sản xuất phân đạm. ♦ Người ta giả thiết quá trình trên được thực hiện trong các điều kiện sau : - H2 và N2 bị hấp phụ dưới dạng nguyên tử - Amoniac tạo ra do 2 hợp chất trung gian không bền ở trạng thái hấp phụ * ♦ Như vậy, cơ chế phản ứng được miêu tả như sau : N2 + 2L ↔ 2N * H2 + 2L ↔ 2H N* + H* ↔ NH* + L * * * NH + H ↔ NH2 + L * * NH2 + H ↔ NH3 + 2L V.3.c Thiết bị phản ứng xúc tác rắn một pha lưu thể (khí hoặc lỏng) V.3.c.1 Tầng xúc tác cố định • Kích thước của hạt xúc tác khoảng 1 ÷ 5 mm ; • Thường là tầng xúc tác cố định đoạn nhiệt, có cấu tạo đơn giản ; • Sơ đồ : Nguyên liệu Tầng xúc tác cố định đoạn nhiệt Lưới đỡ tầng xúc tác Sản phẩm Hình V-2 : Sơ đồ thiết bị phản ứng 2 pha, tầng xúc tác cố định Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  7. 56 xA x x1 T0 T2 T3 T1 nhiệt độ • Đối với phản ứng thu nhiệt, người ta phải tiến hành đốt nóng lại dòng lưu thể giữa các tầng xúc tác. Tuỳ theo nhiệt độ vận hành của thiết bị phản ứng mà sẽ sử dụng thiết bị trao đổi nhiệt hoặc lò để đốt nóng lại dòng lưu thể. Cụ thể, trong quá trình reforming xúc tác, người ta thường bố trí 3 hoặc 4 thiết bị phản ứng mắc nối tiếp, có các lò đốt xen kẻ. • Trong trường hợp phản ứng thu nhiệt hoặc toả nhiệt mạnh, người ta bắt buộc phải cấp nhiệt hoặc loại bớt nhiệt ngay trong tầng xúc tác. Chất xúc tác sẽ được nhồi trong một hệ chùm ống song song và hệ chùm ống này được đặt trong lò đốt, được đốt trực tiếp bằng các mỏ đốt (trong trường hợp phản ứng thu nhiệt mạnh) hoặc chúng sẽ được nhúng chìm trong một dòng lưu thể lạnh (trong trường hợp phản ứng toả nhiệt mạnh). Để đảm bảo quá trình trao đổi nhiệt bên ngoài ống và trong lòng chất xúc tác được tốt, người ta thường thiết kế hệ chùm ống có Φ ≤ 60 mm. • Đối với phản ứng bậc 1 (A1 ⇒ A2 ), giả sử hệ phản ứng là đoạn nhiệt, phương trình cân bằng nhiệt được viết như sau : ⎛ K1A SSH ⎞ ⎛ K1A SV ⎞ C Af = C Ao exp ⎜ − ⎟ = C Ao exp ⎜ − ⎟ ⎝ v ⎠ ⎝ v ⎠ 3 Với : CAo - nồng độ của cấu tử A1 ở đầu vào của thiết bị phản ứng (kmol/m ) 3 CAf - nồng độ của cấu tử A1 ở đầu ra của thiết bị phản ứng (kmol/m ) K1 - hằng số động học của quá trình khuyếch tán của cấu tử A1 đến bề mặt ngoài của hạt xúc tác ; AS - diện tích bề mặt riêng của hạt xúc tác, bằng tỉ số giữa tổng diện tích bề mặt của các hạt xúc tác trên thể tích của tầng xúc tác (m-1) v - lưu lượng thể tích của hỗn hợp phản ứng (m3/s) S - tiết diện ngang của tầng xúc tác (m2) H - chiều cao của tầng xúc tác (m) V - thể tích của tầng xúc tác (m3) Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  8. 58 • Ta xét chủ yếu thiết bị phản ứng chéo dòng, thường được sử dụng trong quá trình reforming - xúc tác được tái sinh liên tục (régénératif) : - Trong đó, chất xúc tác chuyển động giữa 2 lớp lưới trụ đồng tâm. Nguyên liệu sẽ đi qua lớp lưới ngoài, xuyên ngang tầng xúc tác và sản phẩm được lấy ra qua lớp lưới trong. - Tổn thất áp suất qua lớp xúc tác cũng có thể được xác định qua biểu thức của Ergun. Tuy nhiên, trong trường hợp này phải xác định giá trị (1 − ep) : độ rỗng của tầng xúc tác di động một cách chính xác bằng thực nghiệm cho mỗi loại chất xúc tác. - Sự tuần hoàn của chất xúc tác thường được đảm bảo bằng thiết bị nâng khí động thẳng đứng. Khi chất xúc tác đi xuống phía dưới của thiết bị phản ứng hoặc thiết bị tái sinh (có mật độ sít đặc : phase dense) sẽ được đưa vào bộ phận nâng khí động (Hình 7.11). Lúc đó, dòng khí thứ cấp sẽ đẩy các hạt xúc tác vào ống nâng chính giữa, tại đây, chúng lại được dòng khí sơ cấp kéo lên (có mật độ loãng : phase diluée) đến bình chứa chất xúc tác ở phía trên. Từ đó, chúng lại chuyển động xuống thiết bị phản ứng dưới tác dụng của lực trọng trường. Như vậy, lưu lượng chất xúc tác tuần hoàn liên tục trong hệ thống được điều khiển bởi năng suất của thiết bị nâng khí động. V.3.c.3 Tầng xúc tác sôi • Trong trường hợp này, tầng xúc tác ở trạng thái tầng sôi do các hạt chất xúc tác được kéo lên (bởi một hay nhiều lưu thể chuyển động từ dưới lên trên) rồi lại rơi xuống dưới tác dụng của lực trọng trường. • Theo bản chất của các lưu thể, người ta phân biệt : - Tầng sôi khí - rắn ; - Tầng sôi lỏng - rắn ; - Tầng sôi khí - lỏng - rắn ; • Chuyển động tầng sôi của các hạt chất xúc tác chỉ đạt được khi vận tốc chuyển động từ dưới lên của lưu thể vượt quá một giới hạn nào đó và được gọi là vận tốc bề mặt tối thiểu của lưu thể (VSF)m : vượt quá vận tốc này, tầng xúc tác ở trạng thái tầng sôi ; bé hơn vận tốc này, tầng xúc tác trở về trạng thái cố định. 1/ 2 33,7µ ⎛ 3,6×10−5 ()ρ − ρ ρ d 3 g ⎞ ()V = F ⎜1+ P F F p ⎟ −1 SF m ⎜ 2 ⎟ d p ρ F ⎝ µ F ⎠ • Khi cho một dòng lưu thể đi từ dưới lên qua một tầng xúc tác rắn, người ta đo độ tổn thất áp suất phụ thuộc vào vận tốc bề mặt VSF của lưu thể và thu được một đường cong như hình 7.13. • Khi VSF (VSF)m : Tổn thất áp suất không đổi khi VSF tăng. Lúc đó, khối lượng biểu kiến của tầng xúc tác xem như không đổi • Khi VSF = uT : Tổn thất áp suất giảm khi VSF tăng, với uT là vận tốc kéo theo các hạt xúc tác. Lúc đó, lực kéo của lưu thể sẽ thắng lực trọng trường và hạt chất xúc tác sẽ bị kéo theo dòng lưu thể. Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  9. 60 V.3.d Thiết bị phản ứng xúc tác rắn nhiều pha V.3.d.1 Thiết bị phản ứng ba pha với tầng xúc tác cố định • Tuỳ thuộc vào chiều chuyển động của hai pha khí và lỏng mà phân thành 3 loại : - Hệ xuôi dòng chuyển động từ trên xuống ; - Hệ xuôi dòng chuyển động từ dưới lên ; - Hệ ngược dòng ; A- Hệ xuôi dòng chuyển B- Hệ xuôi dòng chuyển động từ trên xuống động từ dưới lên Khí Lỏng Khí + Lỏng Tầng xúc tác cố định C- Hệ ngược dòng Khí + Lỏng Khí Lỏng Khí Lỏng Khí Lỏng Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  10. 62 bị phản ứng, trong đó khu vực phản ứng nằm ở phần trên với nhiều tầng xúc tác. Như vậy, người ta thực hiện đồng thời quá trình tách MTBE sản phẩm và quá trình chuyển hóa iso- butène. Theo nguyên tắc Le Chatellier, với một phản ứng thuận nghịch, khi ta tiến hành loại một cấu tử nào đó thì cân bằng sẽ dịch chuyển về phía tạo thành cấu tử này. Ở đây, sản phẩm MTBE tạo thành được tách ra liên tục nhờ chưng cất nên cân bằng của phản ứng dịch chuyển triệt để về phía tạo thành MTBE nên hiệu suất chuyển hóa iso-butène rất cao. V.3.d.2 Thiết bị phản ứng ba pha với tầng xúc tác sôi (A lit bouillonnant) • Sơ đồ : Sản phẩm Khí + Lỏng Mực lớp xúc tác sôi Tầng xúc tác sôi Khí Lỏng • Hai pha lỏng và khí vào thiết bị phản ứng, đi từ dưới lên và tạo ra trạng thái chuyển động sôi dưới dạng huyền phù cho các hạt xúc tác có đường kính khoảng 1 ÷ 5 mm. Sau đó, hỗn hợp sản phẩm khí - lỏng đi ra từ phần trên của thiết bị phản ứng mà không kéo theo các hạt xúc tác. • Xác định vận tốc bề mặt tối thiểu của các lưu thể : Ta áp dụng biểu thức đã được đề cập đến trong phần thiết bị phản ứng tầng sôi xúc tác rắn 1 lưu thể, nhưng ở đây sẽ bao gồm hai đại lượng tính cho hai lưu thể lỏng và khí. 1/ 2 33,7µ ⎛ 3,6×10−5 ()ρ − ρ ρ d 3 g ⎞ ()V = L ⎜1+ P L L p ⎟ −1 SL m ⎜ 2 ⎟ d p ρ L ⎝ µ L ⎠ 1/ 2 33,7µ ⎛ 3,6×10−5 ()ρ − ρ ρ d 3 g ⎞ ()V = G ⎜1+ P G G p ⎟ −1 SG m ⎜ 2 ⎟ d p ρG ⎝ µG ⎠ Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  11. 64 750÷10000 C C(R) + 2S(K) ⎯⎯⎯⎯⎯⎯→ CS2(K) - sản xuất cyanur natri từ Natri amid : 8000 C NaNH2(L) + C(R) ⎯⎯⎯⎯→ NaCN(L) + H2(K) Hạt phản ứng Hạt phản ứng Hạt ban đầu một phần hoàn toàn Thời gian Thời gian Hạt cuối cùng kích thước không đổi Hạt ban đầu Hạt co rút Thời gian Thời gian Thời gian theo thời gian và cuối cùng biến mất Tro hoặc sản phẩm khí làm hạt co rút V.4.b Mô hình phản ứng ♦ Để thiết lập biểu thức vận tốc phản ứng rắn - lưu chất không có chất xúc tác, ta phải xác định rõ mô hình phản ứng xảy ra. Nếu đã chọn mô hình thì phải chấp nhận biểu thức vận tốc tương đương và ngược lại. ♦ Có 2 mô hình được lý tưởng hóa đơn giản là : • Mô hình chuyển hóa liên tục : tác chất khí (hoặc lỏng) xâm nhập vào các hạt chất rắn và phản ứng xảy ra ở khắp hạt rắn, liên tục với vận tốc khác nhau trong hạt rắn. Như vậy, tác chất rắn tham gia phản ứng liên tục trong toàn bộ hạt • Mô hình lỏi chưa chuyển hóa : tác chất khí ban đầu chỉ xâm nhập vào lớp vỏ ngoài của hạt rắn và phản ứng chỉ xảy ra ở lớp vỏ ngoài này. Vùng phản ứng sau đó tiến dần vào bên trong, bỏ lại ở bên ngoài lớp vật chất đã hoàn toàn chuyển hóa và những chất trơ (tro). Như vậy, tại thời điểm bất kỳ luôn luôn tồn tại lỏi vật chất chưa chuyển hóa có đường kính giảm dần theo thời gian phản ứng Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  12. 66 4- Các sản phẩm tạo thành ở thể khí sẽ khuyếch tán qua lớp tro để đến bề mặt ngoài hạt rắn 5- Các sản phẩm tạo thành ở thể khí sẽ tiếp tục khuyếch tán qua lớp phim khí để nhập vào trong dòng khí Mô hình trên đây là mô hình tổng quát, có nhiều trường hợp sẽ thiếu một hoặc nhiều giai đoạn trên, chẳng hạn sản phẩm không sinh ra sản phẩm khí hoặc phản ứng không thuận nghịch thì giai đoạn 4 và 5 sẽ không tạo nên trở lực nào cho phản ứng. Ngoài ra, ta còn có thể đơn giản hóa mô hình bằng khái niệm giai đoạn kiểm soát vận tốc vì các giai đoạn xảy ra liên tiếp nhau và không nhất thiết trở lực của các giai đoạn trên đều có cùng độ lớn. Xét phản ứng một chiều : A()K + bB(R )→ Saín pháøm Để đơn giản việc phân tích mô hình lõi chưa chuyển hóa, ta xem hạt rắn là hạt đơn hình cầu và các giai đoạn thành phần có thể được xem như thuộc 3 dạng trở lực chính : - trở lực do khuyếch tán qua lớp phim khí - trở lực do khuyếch tán qua lớp tro - trở lực do phản ứng V.4.c.1 Giai đoạn khuyếch tán qua lớp phim khí là giai đoạn kiểm soát Lớp phim Bề mặt lõi khí chưa phản ứng Tro Bề mặt hạt Lõi t khí ấ CAK tác ch độ ng ồ N CAr = CAc R rc 0 rc R Gọi : R - bán kính của hạt rắn ban đầu rc - bán kính lõi chưa chuyển hóa CAk, CAr, CAc - nồng độ tác chất A trong dòng khí, tại bề mặt hạt ban đầu và tại bề mặt lõi chưa chuyển hóa Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  13. 68 V.4.c.2 Giai đoạn khuyếch tán qua lớp tro là giai đoạn kiểm soát Trong trường hợp này, việc phân tích thiết lập phương trình vận tốc khá phức tạp vì lõi chưa chuyển hóa càng lúc càng co lại làm cho bề dày lớp tro càng ngày càng tăng thêm, nghĩa là trở lực của lớp tro tăng theo thời gian. Ta chia giai đoạn này thành 2 giai đoạn nhỏ : ♦ Giai đoạn 1 : trong giai đoạn này, có thể xem kích thước lõi không đổi, trong khi A khuyếch tán qua lớp tro để vào bên trong. Điều này cũng hợp lý vì A có thể di chuyển qua lớp tro với vận tốc gấp cả ngàn lần vận tốc lõi co rút (tương ứng với tỉ số khối lượng riêng của chất rắn và chất khí). Do đó gradient nồng độ A qua lớp tro không đổi theo thời gian. Ở trạng thái ổn định này, vận tốc phản ứng sẽ tương ứng với vận tốc khuyếch tán qua bất kỳ mặt cầu nào của lớp tro. Aïp dụng định luật Fick II : dN dC − A = 4πr2.D A (5) dt Ae dr 2 Trong đó, DAe là hệ số khuyếch tán của tác chất khí qua lớp tro, m /s. Thường rất khó xác định giá trị của đại lượng này vì tính chất của lớp tro rất nhạy với các tạp chất không tinh khiết trong chất rắn và sự biến đổi môi trường xung quanh hạt. Lấy tích phân qua lớp tro với r biến thiên từ R đến rc : rc C Ac =0 dNA dr − ∫ = 4π.DAe ∫ dCA dt 2 R r C Ak =C Ar dNA ⎛ 1 1 ⎞ ⇒ − ⎜ − ⎟ = 4π.DAeCAk ()6 dt ⎝ rc R ⎠ ♦ Giai đoạn 2 : trong giai đoạn này, ta cho kích thước lõi chưa phản ứng thay đổi theo thời gian. Lõi càng lúc càng giảm dần kích thước trong khi đó bề dày của lớp tro tăng lên, làm giảm thông lượng khuyếch tán của A. Phương trình vận tốc bây giờ chứa 3 biến số : t, NA, rc, do đó phải khử bớt 1 biến theo 2 biến kia trước khi lấy tích phân. Thay phương trình (3) vào (6), tách biến số và lấy tích phân ta được : rc t ⎛ 1 1 ⎞ 2 − ρB ∫⎜ − ⎟ rc drc = b.DAeCAk ∫ dt R⎝ rc R ⎠ 0 Hay thời gian cần thiết để đạt đến độ chuyển hóa nào đó : 2 3 ρ R 2 ⎡ ⎛ r ⎞ ⎛ r ⎞ ⎤ t = B ⎢1− 3⎜ c ⎟ + 2⎜ c ⎟ ⎥ 6bD C R R A Ak ⎣⎢ ⎝ ⎠ ⎝ ⎠ ⎦⎥ 2 ρBR Thời gian θ để hạt rắn phản ứng hoàn toàn ⇔ rc = 0, ta có : θ = (7) 6bDA CAk 2 3 t ⎛ r ⎞ ⎛ r ⎞ ⇒ = 1− 3⎜ c ⎟ + 2⎜ c ⎟ θ ⎝ R ⎠ ⎝ R ⎠ t 2 / 3 Hay tính theo độ chuyển hóa xB của hạt rắn : =1− 3()1− x + 2()1− x θ B B Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý
  14. 70 1 dN C − ⋅ A = k C = A (7) S dt r A 1 R 3 0 + + k r 2DAe k r Ví dụ : Nung quặng ZnS : 1- Dưới dạng các hạt hình cầu đường kính 2 mm trong một dòng khí chứa 8% oxygen ở 900oC. Phản ứng xảy ra theo phương trình sau : 2ZnS + 3O2 ⇒ 2ZnO + 2SO2 giả sử phản ứng xảy ra theo mô hình lõi chưa chuyển hóa, tính thời gian cần thiết để chuyển hóa toàn bộ hạt 2- Lặp lại quá trình tính toán trên với đường kính hạt là 0,2 mm Biết : - khối lượng riêng của hạt rắn : 4,13 kg/m3 - hằng số vận tốc phản ứng : kr = 2 cm/s - áp suất : 1 at 2 - hệ số khuyếch tán : DAe = 0,08 cm /s Kỹ thuật - Thiết bị phản ứng ThS. Lê thị Như Ý